Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 559
1.
Elife ; 122024 May 15.
Article En | MEDLINE | ID: mdl-38747577

Certain bacteria demonstrate the ability to target and colonize the tumor microenvironment, a characteristic that positions them as innovative carriers for delivering various therapeutic agents in cancer therapy. Nevertheless, our understanding of how bacteria adapt their physiological condition to the tumor microenvironment remains elusive. In this work, we employed liquid chromatography-tandem mass spectrometry to examine the proteome of E. coli colonized in murine tumors. Compared to E. coli cultivated in the rich medium, we found that E. coli colonized in tumors notably upregulated the processes related to ferric ions, including the enterobactin biosynthesis and iron homeostasis. This finding indicated that the tumor is an iron-deficient environment to E. coli. We also found that the colonization of E. coli in the tumor led to an increased expression of lipocalin 2 (LCN2), a host protein that can sequester the enterobactin. We therefore engineered E. coli in order to evade the nutritional immunity provided by LCN2. By introducing the IroA cluster, the E. coli synthesizes the glycosylated enterobactin, which creates steric hindrance to avoid the LCN2 sequestration. The IroA-E. coli showed enhanced resistance to LCN2 and significantly improved the anti-tumor activity in mice. Moreover, the mice cured by the IroA-E. coli treatment became resistant to the tumor re-challenge, indicating the establishment of immunological memory. Overall, our study underscores the crucial role of bacteria's ability to acquire ferric ions within the tumor microenvironment for effective cancer therapy.


Escherichia coli , Iron , Lipocalin-2 , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Lipocalin-2/metabolism , Lipocalin-2/genetics , Mice , Iron/metabolism , Neoplasms/therapy , Neoplasms/immunology , Enterobactin/metabolism , Tumor Microenvironment , Cell Line, Tumor
2.
Respir Res ; 25(1): 195, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704585

BACKGROUND: Lipocalin-2 (LCN2) is a secretory glycoprotein upregulated by oxidative stress; moreover, patients with idiopathic pulmonary fibrosis (IPF) have shown increased LCN2 levels in bronchoalveolar lavage fluid (BALF). This study aimed to determine whether circulatory LCN2 could be a systemic biomarker in patients with IPF and to investigate the role of LCN2 in a bleomycin-induced lung injury mouse model. METHODS: We measured serum LCN2 levels in 99 patients with stable IPF, 27 patients with acute exacerbation (AE) of IPF, 51 patients with chronic hypersensitivity pneumonitis, and 67 healthy controls. Further, LCN2 expression in lung tissue was evaluated in a bleomycin-induced lung injury mouse model, and the role of LCN2 was investigated using LCN2-knockout (LCN2 -/-) mice. RESULTS: Serum levels of LCN2 were significantly higher in patients with AE-IPF than in the other groups. The multivariate Cox proportional hazards model showed that elevated serum LCN2 level was an independent predictor of poor survival in patients with AE-IPF. In the bleomycin-induced lung injury mouse model, a higher dose of bleomycin resulted in higher LCN2 levels and shorter survival. Bleomycin-treated LCN2 -/- mice exhibited increased BALF cell and protein levels as well as hydroxyproline content. Moreover, compared with wild-type mice, LCN2-/- mice showed higher levels of circulatory 8-isoprostane as well as lower Nrf-2, GCLC, and NQO1 expression levels in lung tissue following bleomycin administration. CONCLUSIONS: Our findings demonstrate that serum LCN2 might be a potential prognostic marker of AE-IPF. Moreover, LCN2 expression levels may reflect the severity of lung injury, and LCN2 may be a protective factor against bleomycin-induced acute lung injury and oxidative stress.


Biomarkers , Idiopathic Pulmonary Fibrosis , Lipocalin-2 , Mice, Inbred C57BL , Mice, Knockout , Animals , Lipocalin-2/blood , Lipocalin-2/metabolism , Lipocalin-2/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/blood , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/genetics , Male , Humans , Female , Biomarkers/blood , Biomarkers/metabolism , Mice , Aged , Middle Aged , Prognosis , Bleomycin/toxicity , Disease Progression , Disease Models, Animal
3.
Front Cell Infect Microbiol ; 14: 1387126, 2024.
Article En | MEDLINE | ID: mdl-38736752

Introduction: We examined the gut microbiota of travellers returning from tropical areas with and without traveller's diarrhoea (TD) and its association with faecal lipocalin-2 (LCN2) levels. Methods: Participants were recruited at the Hospital Clinic of Barcelona, Spain, and a single stool sample was collected from each individual to perform the diagnostic of the etiological agent causing gastrointestinal symptoms as well as to measure levels of faecal LCN2 as a biomarker of gut inflammation. We also characterised the composition of the gut microbiota by sequencing the region V3-V4 from the 16S rRNA gene, and assessed its relation with the clinical presentation of TD and LCN2 levels using a combination of conventional statistical tests and unsupervised machine learning approaches. Results: Among 61 participants, 45 had TD, with 40% having identifiable etiological agents. Surprisingly, LCN2 levels were similar across groups, suggesting gut inflammation occurs without clinical TD symptoms. Differential abundance (DA) testing highlighted a microbial profile tied to high LCN2 levels, marked by increased Proteobacteria and Escherichia-Shigella, and decreased Firmicutes, notably Oscillospiraceae. UMAP analysis confirmed this profile's association, revealing distinct clusters based on LCN2 levels. The study underscores the discriminatory power of UMAP in capturing meaningful microbial patterns related to clinical variables. No relevant differences in the gut microbiota composition were found between travellers with or without TD. Discussion: The findings suggest a correlation between gut microbiome and LCN2 levels during travel, emphasising the need for further research to discern the nature of this relationship.


Diarrhea , Feces , Gastrointestinal Microbiome , Lipocalin-2 , RNA, Ribosomal, 16S , Humans , Lipocalin-2/metabolism , Feces/microbiology , Feces/chemistry , Male , Adult , Female , RNA, Ribosomal, 16S/genetics , Middle Aged , Diarrhea/microbiology , Spain , Travel , Biomarkers , Inflammation/microbiology , Young Adult , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
4.
Int Immunopharmacol ; 133: 112036, 2024 May 30.
Article En | MEDLINE | ID: mdl-38640713

BACKGROUND: Sepsis refers to a systemic inflammatory response caused by infection, involving multiple organs. Sepsis-associated encephalopathy (SAE), as one of the most common complications in patients with severe sepsis, refers to the diffuse brain dysfunction caused by sepsis without central nervous system infection. However, there is no clear diagnostic criteria and lack of specific diagnostic markers. METHODS: The main active ingredients of coptidis rhizoma(CR) were identified from TCMSP and SwissADME databases. SwissTargetPrediction and PharmMapper databases were used to obtain targets of CR. OMIM, DisGeNET and Genecards databases were used to explore targets of SAE. Limma differential analysis was used to identify the differential expressed genes(DEGs) in GSE167610 and GSE198861 datasets. WGCNA was used to identify feature module. GO and KEGG enrichment analysis were performed using Metascape, DAVID and STRING databases. The PPI network was constructed by STRING database and analyzed by Cytoscape software. AutoDock and PyMOL software were used for molecular docking and visualization. Cecal ligation and puncture(CLP) was used to construct a mouse model of SAE, and the core targets were verified in vivo experiments. RESULTS: 277 common targets were identified by taking the intersection of 4730 targets related to SAE and 509 targets of 9 main active ingredients of CR. 52 common DEGs were mined from GSE167610 and GSE198861 datasets. Among the 25,864 DEGs in GSE198861, LCN2 showed the most significant difference (logFC = 6.9). GO and KEGG enrichment analysis showed that these 52 DEGs were closely related to "inflammatory response" and "innate immunity". A network containing 38 genes was obtained by PPI analysis, among which LCN2 ranked the first in Degree value. Molecular docking results showed that berberine had a well binding affinity with LCN2. Animal experiments results showed that berberine could inhibit the high expression of LCN2,S100A9 and TGM2 induced by CLP in the hippocampus of mice, as well as the high expression of inflammatory factors (TNFα, IL-6 and IL-1ß). In addition, berberine might reduce inflammation and neuronal cell death by partially inhibiting NFκB/LCN2 pathway in the hippocampus of CLP models, thereby alleviating SAE. CONCLUSION: Overall, Berberine may exert anti-inflammatory effects through multi-ingredients, multi-targets and multi-pathways to partially rescue neuronal death and alleviate SAE.


Berberine , Computational Biology , Lipocalin-2 , Molecular Docking Simulation , NF-kappa B , Network Pharmacology , Sepsis-Associated Encephalopathy , Signal Transduction , Animals , Sepsis-Associated Encephalopathy/drug therapy , Sepsis-Associated Encephalopathy/metabolism , Berberine/pharmacology , Berberine/therapeutic use , NF-kappa B/metabolism , Mice , Lipocalin-2/genetics , Lipocalin-2/metabolism , Signal Transduction/drug effects , Humans , Male , Mice, Inbred C57BL , Disease Models, Animal , Neuroinflammatory Diseases/drug therapy , Down-Regulation , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Sepsis/drug therapy , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Protein Interaction Maps
5.
Sci Rep ; 14(1): 9357, 2024 04 23.
Article En | MEDLINE | ID: mdl-38653823

The advent of micro-physiological systems (MPS) in biomedical research has enabled the introduction of more complex and relevant physiological into in vitro models. The recreation of complex morphological features in three-dimensional environments can recapitulate otherwise absent dynamic interactions in conventional models. In this study we developed an advanced in vitro Renal Cell Carcinoma (RCC) that mimics the interplay between healthy and malignant renal tissue. Based on the TissUse Humimic platform our model combines healthy renal proximal tubule epithelial cells (RPTEC) and RCC. Co-culturing reconstructed RPTEC tubules with RCC spheroids in a closed micro-perfused circuit resulted in significant phenotypical changes to the tubules. Expression of immune factors revealed that interleukin-8 (IL-8) and tumor necrosis factor-alfa (TNF-α) were upregulated in the non-malignant cells while neutrophil gelatinase-associated lipocalin (NGAL) was downregulated in both RCC and RPTEC. Metabolic analysis showed that RCC prompted a shift in the energy production of RPTEC tubules, inducing glycolysis, in a metabolic adaptation that likely supports RCC growth and immunogenicity. In contrast, RCC maintained stable metabolic activity, emphasizing their resilience to external factors. RNA-seq and biological process analysis of primary RTPTEC tubules demonstrated that the 3D tubular architecture and MPS conditions reverted cells to a predominant oxidative phosphorylate state, a departure from the glycolytic metabolism observed in 2D culture. This dynamic RCC co-culture model, approximates the physiology of healthy renal tubules to that of RCC, providing new insights into tumor-host interactions. Our approach can show that an RCC-MPS can expand the complexity and scope of pathophysiology and biomarker studies in kidney cancer research.


Carcinoma, Renal Cell , Coculture Techniques , Epithelial Cells , Kidney Neoplasms , Kidney Tubules, Proximal , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Epithelial Cells/metabolism , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Cell Line, Tumor , Lipocalin-2/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology
6.
Front Endocrinol (Lausanne) ; 15: 1365602, 2024.
Article En | MEDLINE | ID: mdl-38645429

The 25 kDa-sized protein Lipocalin 2 (LCN2) was originally isolated from human neutrophil granulocytes more than 30 years ago. LCN2 is an emerging player in innate immune defense, as it reduces bacterial growth due to its ability to sequester iron-containing bacterial siderophores. On the other hand, LCN2 also serves as a transporter for various hydrophobic substances due to its ß-barrel shaped structure. Over the years, LCN2 has been detected in many other cell types including epithelial cells, astrocytes, and hepatocytes. Studies have clearly shown that aberrant expression of LCN2 is associated with a variety of disorders and malignancies, including several diseases of the reproductive system. Furthermore, LCN2 was proposed as a non-invasive prognostic and/or diagnostic biomarker in this context. Although several studies have shed light on the role of LCN2 in various disorders of the female and male reproductive systems, including tumorigenesis, a comprehensive understanding of the physiological function of LCN2 in the reproductive tract is still lacking. However, there is evidence that LCN2 is directly related to fertility, as global depletion of Lcn2 in mice has a negative effect on their pregnancy rate. Since LCN2 expression can be regulated by steroid hormones, it is not surprising that its expression fluctuates greatly during remodeling processes in the female reproductive tract, especially in the uterus. Well-founded details about the expression and regulation of LCN2 in a healthy reproductive state and also about possible changes during reproductive aging could contribute to a better understanding of LCN2 as a target in various diseases. Therefore, the present review summarizes current knowledge about LCN2 in the reproductive system, including studies in rodents and humans, and discusses changes in LCN2 expression during pathological events. The limited data suggest that LCN2 is expressed and regulated differently in healthy male and female reproductive organs.


Lipocalin-2 , Humans , Lipocalin-2/metabolism , Lipocalin-2/genetics , Animals , Female , Male , Reproduction/physiology , Genitalia/metabolism
7.
Nat Commun ; 15(1): 3034, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589429

Chronic stress induces anxiety disorders via both neural pathways and circulating factors. Although many studies have elucidated the neural circuits involved in stress-coping behaviors, the origin and regulatory mechanism of peripheral cytokines in behavioural regulation under stress conditions are not fully understood. Here, we identified a serum cytokine, lipocalin 2 (LCN2), that was upregulated in participants with anxiety disorders. Using a mouse model of chronic restraint stress (CRS), circulating LCN2 was found to be related to stress-induced anxiety-like behaviour via modulation of neural activity in the medial prefrontal cortex (mPFC). These results suggest that stress increases hepatic LCN2 via a neural pathway, leading to disrupted cortical functions and behaviour.


Anxiety , Prefrontal Cortex , Humans , Lipocalin-2/metabolism , Prefrontal Cortex/physiology , Anxiety/metabolism , Anxiety Disorders , Liver/metabolism
8.
Nat Immunol ; 25(5): 790-801, 2024 May.
Article En | MEDLINE | ID: mdl-38664585

Innate immune cells generate a multifaceted antitumor immune response, including the conservation of essential nutrients such as iron. These cells can be modulated by commensal bacteria; however, identifying and understanding how this occurs is a challenge. Here we show that the food commensal Lactiplantibacillus plantarum IMB19 augments antitumor immunity in syngeneic and xenograft mouse tumor models. Its capsular heteropolysaccharide is the major effector molecule, functioning as a ligand for TLR2. In a two-pronged manner, it skews tumor-associated macrophages to a classically active phenotype, leading to generation of a sustained CD8+ T cell response, and triggers macrophage 'nutritional immunity' to deploy the high-affinity iron transporter lipocalin-2 for capturing and sequestering iron in the tumor microenvironment. This process induces a cycle of tumor cell death, epitope expansion and subsequent tumor clearance. Together these data indicate that food commensals might be identified and developed into 'oncobiotics' for a multi-layered approach to cancer therapy.


Iron , Tumor Microenvironment , Animals , Iron/metabolism , Mice , Tumor Microenvironment/immunology , Humans , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/immunology , Mice, Inbred C57BL , Lipocalin-2/metabolism , Lipocalin-2/immunology , Female , Symbiosis/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophage Activation/immunology , Mice, Knockout
9.
Mol Brain ; 17(1): 20, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685046

While the excessive inflammation in cancer cachexia is well-known to be induced by the overproduction of inflammatory mediators in the periphery, microflora disruption and brain dysfunction are also considered to contribute to the induction of cancer cachexia. Hypothalamic microglia play a crucial role in brain inflammation and central-peripheral immune circuits via the production of inflammatory mediators. In the present study, we evaluated possible changes in excessive secretion of gut microbiota-derived endotoxin and the expression timeline of several inflammation-regulatory mediators and their inhibiting modulators in hypothalamic microglia of a mouse model of cancer cachexia following transplantation of pancreatic cancer cells. We demonstrated that the plasma level of lipopolysaccharide (LPS) was significantly increased with an increase in anaerobic bacteria, especially Firmicutes, in the gut at the late stage of tumor-bearing mice that exhibited dramatic appetite loss, sarcopenia and severe peripheral immune suppression. At the early stage, in which tumor-bearing mice had not yet displayed "cachexia symptoms", the mRNA expression of pro-inflammatory cytokines, but not of the neurodegenerative and severe inflammatory modulator lipocalin-2 (LCN2), was significantly increased, whereas at the late "cachexia stage", the level of LCN2 mRNA was significantly increased along with significant decreases in levels of inhibitory immune checkpoint receptors programmed death receptor-1 (PD-1) and CD112R in hypothalamic microglia. In addition, a high density of activated neurons in the paraventricular nucleus (PVN) of the hypothalamus region and a significant increase in corticosterone secretion were found in cachexia model mice. Related to the cachexia state, released corticosterone was clearly increased in normal mice with specific activation of PVN neurons. A marked decrease in the natural killer cell population was also observed in the spleen of mice with robust activation of PVN neurons as well as mice with cancer cachexia. On the other hand, in vivo administration of LPS in normal mice induced hypothalamic microglia with low expression of inhibitory immune checkpoint receptors. These findings suggest that the induction of cancer cachexia may parallel exacerbation of the hypothalamic inflammatory status with polarization to microglia expressed with low levels of inhibitory immune checkpoint receptors following LPS release from the gut microflora.


Cachexia , Hypothalamus , Lipocalin-2 , Lipopolysaccharides , Microglia , Animals , Cachexia/complications , Cachexia/pathology , Microglia/metabolism , Hypothalamus/metabolism , Lipocalin-2/metabolism , Lipopolysaccharides/pharmacology , Male , Cell Line, Tumor , Mice , Programmed Cell Death 1 Receptor/metabolism , Gastrointestinal Microbiome , Cytokines/metabolism , Neoplasms/complications , Mice, Inbred C57BL , Inflammation Mediators/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use
10.
Exp Mol Med ; 56(4): 1001-1012, 2024 Apr.
Article En | MEDLINE | ID: mdl-38622198

Sterol regulatory element-binding protein (SREBP)-1c is involved in cellular lipid homeostasis and cholesterol biosynthesis and is highly increased in nonalcoholic steatohepatitis (NASH). However, the molecular mechanism by which SREBP-1c regulates hepatic stellate cells (HSCs) activation in NASH animal models and patients have not been fully elucidated. In this study, we examined the role of SREBP-1c in NASH and the regulation of LCN2 gene expression. Wild-type and SREBP-1c knockout (1cKO) mice were fed a high-fat/high-sucrose diet, treated with carbon tetrachloride (CCl4), and subjected to lipocalin-2 (LCN2) overexpression. The role of LCN2 in NASH progression was assessed using mouse primary hepatocytes, Kupffer cells, and HSCs. LCN2 expression was examined in samples from normal patients and those with NASH. LCN2 gene expression and secretion increased in CCl4-induced liver fibrosis mice model, and SREBP-1c regulated LCN2 gene transcription. Moreover, treatment with holo-LCN2 stimulated intracellular iron accumulation and fibrosis-related gene expression in mouse primary HSCs, but these effects were not observed in 1cKO HSCs, indicating that SREBP-1c-induced LCN2 expression and secretion could stimulate HSCs activation through iron accumulation. Furthermore, LCN2 expression was strongly correlated with inflammation and fibrosis in patients with NASH. Our findings indicate that SREBP-1c regulates Lcn2 gene expression, contributing to diet-induced NASH. Reduced Lcn2 expression in 1cKO mice protects against NASH development. Therefore, the activation of Lcn2 by SREBP-1c establishes a new connection between iron and lipid metabolism, affecting inflammation and HSCs activation. These findings may lead to new therapeutic strategies for NASH.


Iron , Lipocalin-2 , Liver Cirrhosis , Mice, Knockout , Non-alcoholic Fatty Liver Disease , Sterol Regulatory Element Binding Protein 1 , Animals , Humans , Male , Mice , Carbon Tetrachloride/pharmacology , Disease Models, Animal , Gene Expression Regulation , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Hepatocytes/metabolism , Hepatocytes/pathology , Iron/metabolism , Lipocalin-2/metabolism , Lipocalin-2/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/genetics , Liver Cirrhosis/chemically induced , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
11.
Cell Cycle ; 23(3): 248-261, 2024 Feb.
Article En | MEDLINE | ID: mdl-38526145

Hyaluronidases (HAases) are enzymes that degrade hyaluronic acid (HA) in the animal kingdom. The HAases-HA system is crucial for HA homeostasis and plays a significant role in biological processes and extracellular matrix (ECM)-related pathophysiological conditions. This study aims to explore the role of inhibiting the HAases-HA system in acute kidney injury (AKI). We selected the potent inhibitor "sHA2.75" to inhibit HAase activity through mixed inhibitory mechanisms. The ischemia-reperfusion mouse model was established using male BALB/c mice (7-9 weeks old), and animals were subjected to subcapsular injection with 50 mg/kg sHA2.75 twice a week to evaluate the effects of sHA2.75 on AKI on day 1, 5 and 14 after ischemia-reperfusion or sham procedure. Blood and tissue samples were collected for immunohistochemistry, biochemical, and quantitative analyses. sHA2.75 significantly reduced blood urea nitrogen (BUN) and serum creatinine levels in AKI mouse models. Expression of kidney injury-related genes such as Kidney injury molecule-1 (KIM-1), Neutrophil Gelatinase-Associated Lipocalin (NGAL), endothelial nitric oxide synthase (eNOS), type I collagen (Col1), type III collagen (Col3), alpha-smooth muscle actin (α-SMA) showed significant downregulation in mouse kidney tissues after sHA2.75 treatment. Moreover, sHA2.75 treatment led to decreased plasma levels of Interleukin-6 (IL-6) proteins and reduced mRNA levels in renal tissues of AKI mice. Inhibitor sHA2.75 administration in the AKI mouse model downregulated kidney injury-related biomarkers and immune-specific genes, thereby alleviating AKI in vivo. These findings suggest the potential use of HAase inhibitors for treating ischemic reperfusion-induced kidney injury.


Acute Kidney Injury , Hyaluronoglucosaminidase , Mice, Inbred BALB C , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/complications , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/etiology , Male , Hyaluronoglucosaminidase/antagonists & inhibitors , Mice , Disease Models, Animal , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Blood Urea Nitrogen , Hyaluronic Acid , Creatinine/blood , Lipocalin-2/metabolism
12.
Pol J Vet Sci ; 27(1): 95-105, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38511628

Arsenic is an important metalloid that can cause poisoning in humans and domestic animals. Exposure to arsenic causes cell damage, increasing the production of reactive oxygen species. Chitosan is a biopolymer obtained by deacetylation of chitin with antioxidant and metal ion chelating properties. In this study, the protective effect of chitosan on arsenic-induced nephrotoxicity and oxidative damage was investigated. 32 male Wistar-albino rats were divided into 4 groups of 8 rats each as control group (C), chitosan group (CS group), arsenic group (AS group), and arsenic+chitosan group (AS+CS group). The C group was given distilled water by oral gavage, the AS group was given 100 ppm/day Na-arsenite ad libitum with drinking water, the CS group was given 200 mg/kg/day chitosan dissolved in saline by oral gavage, the AS+CS group was given 100 ppm/day Na-arsenite ad libitum with drinking water and 200 mg/kg/day chitosan dissolved in saline by oral gavage for 30 days. At the end of the 30-day experimental period, 90 mg/kg ketamine was administered intraperitoneally to all rats, and blood samples and kidney tissues were collected. Urea, uric acid, creatinine, P, Mg, K, Ca, Na, Cystatin C (CYS-C), Neutrophil Gelatinase Associated Lipocalin (NGAL) and Kidney Injury Molecule 1 (KIM-1) levels were measured in serum samples. Malondialdehyde (MDA), Glutathione (GSH), Catalase (CAT) and Superoxide dismutase (SOD) levels in the supernatant obtained from kidney tissue were analyzed by ELISA method. Compared with AS group, uric acid and creatinine levels of the AS+CS group were significantly decreased (p<0.001), urea, KIM-1, CYS-C, NGAL, and MDA levels were numerically decreased and CAT, GSH, and SOD levels were numerically increased (p>0.05). In conclusion, based on both biochemical and histopathological-immunohistochemical- immunofluorescence findings, it can be concluded that chitosan attenuates kidney injury and protects the kidney.


Arsenic , Arsenites , Chitosan , Drinking Water , Renal Insufficiency , Rodent Diseases , Humans , Rats , Male , Animals , Arsenic/toxicity , Arsenic/analysis , Arsenic/metabolism , Lipocalin-2/analysis , Lipocalin-2/metabolism , Lipocalin-2/pharmacology , Chitosan/pharmacology , Chitosan/analysis , Chitosan/metabolism , Arsenites/analysis , Arsenites/metabolism , Arsenites/pharmacology , Uric Acid/analysis , Uric Acid/metabolism , Uric Acid/pharmacology , Creatinine , Drinking Water/analysis , Drinking Water/metabolism , Rats, Wistar , Kidney , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Renal Insufficiency/veterinary , Glutathione/metabolism , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism , Urea/metabolism , Rodent Diseases/metabolism
13.
Am J Physiol Renal Physiol ; 326(5): F727-F736, 2024 May 01.
Article En | MEDLINE | ID: mdl-38511219

Although obesity is recognized as a risk factor for cardiorenal and metabolic diseases, the impact of parental obesity on the susceptibility of their offspring to renal injury at adulthood is unknown. We examined the impact of parental obesity on offspring kidney function, morphology, and markers of kidney damage after acute kidney injury (AKI). Offspring from normal (N) diet-fed C57BL/6J parents were fed either N (NN) or a high-fat (H) diet (NH) from weaning until adulthood. Offspring from obese H diet-fed parents were fed N (HN) or H diet (HH) after weaning. All offspring groups were submitted to bilateral AKI by clamping the left and right renal pedicles for 30 min. Compared with male NH and NN offspring from lean parents, male HH and HN offspring from obese parents exhibited higher kidney injury markers such as urinary, renal osteopontin, plasma creatinine, urinary albumin excretion, and neutrophil gelatinase-associated lipocalin (NGAL) levels, and worse histological injury score at 22 wk of age. Only albumin excretion and NGAL were elevated in female HH offspring from obese parents compared with lean and obese offspring from lean parents. We also found an increased mortality rate and worse kidney injury scores after AKI in male offspring from obese parents, regardless of the diet consumed after weaning. Female offspring were protected from major kidney injury after AKI. These results indicate that parental obesity leads to increased kidney injury in their offspring after ischemia-reperfusion in a sex-dependent manner, even when their offspring remain lean.NEW & NOTEWORTHY Offspring from obese parents are more susceptible to kidney injury and worse outcomes following an acute ischemia-reperfusion insult. Male, but not female, offspring from obese parents exhibit increased blood pressure early in life. Female offspring are partially protected against major kidney injury induced by ischemia-reperfusion.


Acute Kidney Injury , Kidney , Mice, Inbred C57BL , Reperfusion Injury , Animals , Male , Female , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/physiopathology , Acute Kidney Injury/pathology , Kidney/physiopathology , Kidney/pathology , Kidney/metabolism , Sex Factors , Obesity/complications , Obesity/physiopathology , Diet, High-Fat , Pregnancy , Lipocalin-2/metabolism , Obesity, Maternal/metabolism , Obesity, Maternal/complications , Obesity, Maternal/physiopathology , Prenatal Exposure Delayed Effects , Mice , Risk Factors , Disease Models, Animal , Biomarkers/blood
14.
Front Immunol ; 15: 1358719, 2024.
Article En | MEDLINE | ID: mdl-38533497

Neuroinflammation is a common pathological process in various neurological disorders, including stroke, Alzheimer's disease, Parkinson's disease, and others. It involves the activation of glial cells, particularly astrocytes, and the release of inflammatory mediators. Lipocalin-2 (Lcn-2) is a secretory protein mainly secreted by activated astrocytes, which can affect neuroinflammation through various pathways. It can also act as a pro-inflammatory factor by modulating astrocyte activation and polarization through different signaling pathways, such as NF-κB, and JAK-STAT, amplifying the inflammatory response and aggravating neural injury. Consequently, Lcn-2 and astrocytes may be potential therapeutic targets for neuroinflammation and related diseases. This review summarizes the current knowledge on the role mechanisms, interactions, and therapeutic implications of Lcn-2 and astrocytes in neuroinflammation.


Astrocytes , Neuroinflammatory Diseases , Humans , Astrocytes/metabolism , Lipocalin-2/metabolism , Inflammation/metabolism , Neuroglia/metabolism
15.
Exp Eye Res ; 242: 109863, 2024 May.
Article En | MEDLINE | ID: mdl-38494102

PURPOSE: Pseudomonas aeruginosa-induced keratitis is one of the most severe and challenging forms of corneal infection, owing to its associated intense inflammatory reactions leading to corneal necrosis and dense corneal scar with loss of vision. Since mesenchymal stem cells (MSCs) are reported to possess antimicrobial and immunomodulatory properties, they can be tested as an adjuvant treatment along with the antibiotics which are the current standard of care. This study aims to investigate the anti-bacterial and immunomodulatory roles of human bone marrow MSC-derived conditioned medium (MSC-CM) in P. aeruginosa-infected human corneal epithelial cells (HCECs) in vitro. METHODS: The effect of MSC-CM on the growth of clinical isolates of P. aeruginosa was evaluated by colony-forming unit assay. The expression of inflammatory cytokines (IL-6 and TNF-α) and an antimicrobial peptide (Lipocalin 2) in lipopolysaccharide-treated MSCs and HCECs was analyzed through ELISA. Corneal epithelial repair following infection with P. aeruginosa was studied through scratch assay. RESULTS: Compared to control (P. aeruginosa (5*105) incubated in DMEM (1 ml) at 37 °C for 16 h), MSC-CM significantly: i) inhibits the growth of P. aeruginosa (159*109 vs. 104*109 CFU/ml), ii) accelerates corneal epithelial repair following infection with P. aeruginosa (9% vs. 24% closure of the wounded area after 12 h of infection), and iii) downregulates the lipopolysaccharide-induced expression of IL-6, TNF-α and Lipocalin 2 in HCECs. A combination of MSC-CM with an antibiotic, Ciprofloxacin moderately regulated the expression of IL-6, TNF-α, and Lipocalin 2. CONCLUSION: MSC-CM holds promise as an adjunctive therapeutic approach for P. aeruginosa-induced corneal epithelial damage.


Enzyme-Linked Immunosorbent Assay , Eye Infections, Bacterial , Mesenchymal Stem Cells , Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Eye Infections, Bacterial/microbiology , Eye Infections, Bacterial/metabolism , Eye Infections, Bacterial/pathology , Pseudomonas Infections/microbiology , Pseudomonas Infections/therapy , Pseudomonas Infections/drug therapy , Mesenchymal Stem Cells/metabolism , Epithelium, Corneal/microbiology , Epithelium, Corneal/pathology , Epithelium, Corneal/metabolism , Cells, Cultured , Keratitis/microbiology , Keratitis/metabolism , Keratitis/pathology , Mesenchymal Stem Cell Transplantation/methods , Culture Media, Conditioned/pharmacology , Proof of Concept Study , Interleukin-6/metabolism , Corneal Ulcer/microbiology , Corneal Ulcer/metabolism , Corneal Ulcer/pathology , Corneal Ulcer/drug therapy , Lipocalin-2/metabolism , Tumor Necrosis Factor-alpha/metabolism
16.
Int Ophthalmol ; 44(1): 78, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38351392

BACKGROUND: Studies have uncovered LCN2 as a marker of inflammation strongly related to obesity, insulin resistance, and abnormal glucose metabolism in humans, and is involved in vascular diseases, inflammatory diseases, and neurological diseases. In recent years, studies have shown that elevated levels of LCN2 have a strong association with diabetic retinopathy (DR), but the pathogenesis is unknown. Here, we reviewed the relevant literature and compiled the pathogenesis associated with LCN2-induced DR. METHODS: We searched PubMed and Web of Science electronic databases using "lipocalin-2, diabetic retinopathy, retinal degeneration, diabetic microangiopathies, diabetic neuropathy and inflammation" as subject terms. RESULTS: In diabetic retinal neuropathy, LCN2 causes impaired retinal photoreceptor function and retinal neurons; in retinal microangiopathy, LCN2 induces apoptosis of retinal vascular endothelial cells and promotes angiogenesis; in retinal inflammation, increased secretion of LCN2 recruits inflammatory cells and induces pro-inflammatory cytokines. Moreover, LCN2 has the potential as a biomarker for DR. Recent studies have shown that retinal damage can be attenuated by silencing LCN2, which may be associated with the inhibition of caspase-1-mediated pyroptosis, and LCN2 may be a new target for the treatment of DR. CONCLUSIONS: In conclusion, LCN2, involved in the development of diabetic retinopathy, is a key factor in diabetic retinal microangiopathy, neurodegeneration, and retinal inflammation. LCN2 is likely to be a novel molecular target leading to DR, and a more in-depth study of the pathogenesis of DR caused by LCN2 may provide considerable benefits for clinical research and potential drug development.


Diabetes Mellitus , Diabetic Retinopathy , Humans , Diabetic Retinopathy/complications , Lipocalin-2/metabolism , Endothelial Cells , Retina/pathology , Inflammation/metabolism
17.
J Neuroinflammation ; 21(1): 39, 2024 Feb 02.
Article En | MEDLINE | ID: mdl-38308309

BACKGROUND: Children born to obese mothers are at increased risk of developing mood disorders and cognitive impairment. Experimental studies have reported structural changes in the brain such as the gliovascular unit as well as activation of neuroinflammatory cells as a part of neuroinflammation processing in aged offspring of obese mothers. However, the molecular mechanisms linking maternal obesity to poor neurodevelopmental outcomes are not well established. The ephrin system plays a major role in a variety of cellular processes including cell-cell interaction, synaptic plasticity, and long-term potentiation. Therefore, in this study we determined the impact of maternal obesity in pregnancy on cortical, hippocampal development, vasculature and ephrin-A3/EphA4-signaling, in the adult offspring in mice. METHODS: Maternal obesity was induced in mice by a high fat/high sugar Western type of diet (HF/HS). We collected brain tissue (prefrontal cortex and hippocampus) from 6-month-old offspring of obese and lean (control) dams. Hippocampal volume, cortical thickness, myelination of white matter, density of astrocytes and microglia in relation to their activity were analyzed using 3-D stereological quantification. mRNA expression of ephrin-A3, EphA4 and synaptic markers were measured by qPCR in the brain tissue. Moreover, expression of gap junction protein connexin-43, lipocalin-2, and vascular CD31/Aquaporin 4 were determined in the hippocampus by immunohistochemistry. RESULTS: Volume of hippocampus and cortical thickness were significantly smaller, and myelination impaired, while mRNA levels of hippocampal EphA4 and post-synaptic density (PSD) 95 were significantly lower in the hippocampus in the offspring of obese dams as compared to offspring of controls. Further analysis of the hippocampal gliovascular unit indicated higher coverage of capillaries by astrocytic end-feet, expression of connexin-43 and lipocalin-2 in endothelial cells in the offspring of obese dams. In addition, offspring of obese dams demonstrated activation of microglia together with higher density of cells, while astrocyte cell density was lower. CONCLUSION: Maternal obesity affects brain size, impairs myelination, disrupts the hippocampal gliovascular unit and decreases the mRNA expression of EphA4 and PSD-95 in the hippocampus of adult offspring. These results indicate that the vasculature-glia cross-talk may be an important mediator of altered synaptic plasticity, which could be a link between maternal obesity and neurodevelopmental/neuropsychiatric disorders in the offspring.


Obesity, Maternal , Prenatal Exposure Delayed Effects , Humans , Child , Mice , Animals , Female , Pregnancy , Aged , Infant , Obesity, Maternal/metabolism , Lipocalin-2/metabolism , Ephrins/metabolism , Ephrin-A3/genetics , Ephrin-A3/metabolism , Adult Children , Endothelial Cells/metabolism , Obesity/metabolism , Hippocampus/metabolism , RNA, Messenger/metabolism , Connexins/genetics , Connexins/metabolism , Diet, High-Fat/adverse effects , Prenatal Exposure Delayed Effects/metabolism
18.
BMC Pharmacol Toxicol ; 25(1): 14, 2024 Feb 02.
Article En | MEDLINE | ID: mdl-38308341

OBJECTIVE: Uranium exposure may cause serious pathological injury to the body, which is attributed to oxidative stress and inflammation. However, the pathogenesis of uranium toxicity has not been clarified. Here, we evaluated the level of oxidative stress to determine the relationship between uranium exposure, nephrotoxic oxidative stress, and endothelial inflammation. METHODS: Forty male Sprague-Dawley rats were divided into three experimental groups (U-24h, U-48h, and U-72h) and one control group. The three experimental groups were intraperitoneally injected with 2.0 mg/kg uranyl acetate, and tissue and serum samples were collected after 24, 48, and 72 h, respectively, whereas the control group was intraperitoneally injected with 1.0 ml/kg normal saline and samples were collected after 24 h. Then, we observed changes in the uranium levels and oxidative stress parameters, including the total oxidative state (TOS), total antioxidant state (TAS), and oxidative stress index (OSI) in kidney tissue and serum. We also detected the markers of kidney injury, namely urea (Ure), creatine (Cre), cystatin C (CysC), and neutrophil gelatinase-associated lipocalin (NGAL). The endothelial inflammatory markers, namely C-reactive protein (CRP), lipoprotein phospholipase A2 (Lp-PLA2), and homocysteine (Hcy), were also quantified. Finally, we analyzed the relationship among these parameters. RESULTS: TOS (z = 3.949; P < 0.001), OSI (z = 5.576; P < 0.001), Ure (z = 3.559; P < 0.001), Cre (z = 3.476; P < 0.001), CysC (z = 4.052; P < 0.001), NGAL (z = 3.661; P < 0.001), and CRP (z = 5.286; P < 0.001) gradually increased after uranium exposure, whereas TAS (z = -3.823; P < 0.001), tissue U (z = -2.736; P = 0.001), Hcy (z = -2.794; P = 0.005), and Lp-PLA2 (z = -4.515; P < 0.001) gradually decreased. The serum U level showed a V-shape change (z = -1.655; P = 0.094). The uranium levels in the kidney tissue and serum were positively correlated with TOS (r = 0.440 and 0.424; P = 0.005 and 0.007) and OSI (r = 0.389 and 0.449; P = 0.013 and 0.004); however, serum U levels were negatively correlated with TAS (r = -0.349; P = 0.027). Partial correlation analysis revealed that NGAL was closely correlated to tissue U (rpartial = 0.455; P = 0.003), CysC was closely correlated to serum U (rpartial = 0.501; P = 0.001), and Lp-PLA2 was closely correlated to TOS (rpartial = 0.391; P = 0.014), TAS (rpartial = 0.569; P < 0.001), and OSI (rpartial = -0.494; P = 0.001). Pearson correlation analysis indicated that the Hcy levels were negatively correlated with tissue U (r = -0.344; P = 0.030) and positively correlated with TAS (r = 0.396; P = 0.011). CONCLUSION: The uranium-induced oxidative injury may be mainly reflected in enhanced endothelial inflammation, and the direct chemical toxicity of uranium plays an important role in the process of kidney injury, especially in renal tubular injury. In addition, CysC may be a sensitive marker reflecting the nephrotoxicity of uranium; however, Hcy is not suitable for evaluating short-term endothelial inflammation involving oxidative stress.


Uranium , Rats , Male , Animals , Lipocalin-2/metabolism , Uranium/toxicity , Uranium/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Rats, Sprague-Dawley , Oxidative Stress , Antioxidants/pharmacology , Kidney/pathology , Inflammation/metabolism , Urea
19.
Neuroendocrinology ; 114(5): 468-482, 2024.
Article En | MEDLINE | ID: mdl-38194942

INTRODUCTION: Lipocalin 2 (Lcn2) is a key factor in appetite suppression. However, the effect of Lcn2 on appetite in terms of sex differences has not been thoroughly studied. METHODS: Young (3-month-old) whole-body Lcn2 knockout (Lcn2-/-) mice were fed a normal diet (ND) or high-fat diet (HFD) for 8 weeks to investigate obesity, food intake, serum metabolism, hepatic lipid metabolism, and regulation of gastrointestinal hormones. RESULTS: Lcn2 deficiency significantly increased the body weight and food intake of male mice when fed ND instead of HFD and females when fed HFD but not ND. Compared to wild-type (WT) male mice, the adiponectin level and phosphorylated form of adenosine 5'-monophosphate-activated protein kinase (AMPK) in the hypothalamus were both increased in ND-fed Lcn2-/- male mice but decreased in HFD-fed Lcn2-/- male mice. However, in female mice, adiponectin and its energy metabolism pathway were not altered. Instead, estradiol was found to be substantially higher in ND-fed Lcn2-/- female mice and substantially lower in HFD-fed Lcn2-/- female mice compared with WT female mice. Estradiol alteration also caused similar changes in ERα in the hypothalamus, leading to changes in the PI3K/AKT energy metabolism pathway. It suggested that the increased appetite caused by Lcn2 deficiency in male mice may be due to increased adiponectin expression and promotion of AMPK phosphorylation, while in female mice it may be related to the decrease of circulating estradiol and the inhibition of the hypothalamic ERα/PI3K/AKT energy metabolism pathway. CONCLUSION: Lcn2 plays in a highly sex-specific manner in the regulation of appetite in young mice.


Appetite Regulation , Diet, High-Fat , Lipocalin-2 , Mice, Knockout , Obesity , Sex Characteristics , Animals , Lipocalin-2/metabolism , Diet, High-Fat/adverse effects , Male , Female , Obesity/metabolism , Mice , Appetite Regulation/physiology , Mice, Inbred C57BL , Hypothalamus/metabolism , Adiponectin/metabolism , Eating/physiology , Energy Metabolism/physiology , Appetite/physiology
20.
Biomed Pharmacother ; 171: 116091, 2024 Feb.
Article En | MEDLINE | ID: mdl-38171248

Lipocalin 2 (LCN2) is a secreted glycoprotein that is produced by immune cells, including neutrophils and macrophages. It serves various functions such as transporting hydrophobic ligands across the cellular membrane, regulating immune responses, keeping iron balance, and fostering epithelial cell differentiation. LCN2 plays a crucial role in several physiological processes. LCN2 expression is upregulated in a variety of human diseases and cancers. High levels of LCN2 are specifically linked to breast cancer (BC) cell proliferation, apoptosis, invasion, migration, angiogenesis, immune regulation, chemotherapy resistance, and prognosis. As a result, LCN2 has gained attention as a potential therapeutic target for BC. This article offered an in-depth review of the advancement of LCN2 in the context of BC occurrence and development.


Breast Neoplasms , Humans , Female , Lipocalin-2/metabolism , Breast Neoplasms/metabolism , Acute-Phase Proteins/metabolism , Lipocalins/metabolism , Macrophages/metabolism
...